
Section 15.1:

Double Integrals Over 

Rectangles



What We’ll Learn In Section 15.2

1. The Integral (Calc. 1 Version, 𝑓 𝑥 ≥ 0 , area)

2. The Double Integral (Over a Rectangle,       

𝑓 𝑥, 𝑦 ≥ 0 , volume)

3. Iterated Integrals  

4. General Integrals 



1. The Integral (Calc. 1 Version)

Let  𝑓(𝑥) be a continuous function on [a, b]. (𝑓 𝑥 ≥ 0 , finding area under curve case)

n = # of subintervals = # of rectangles

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = the endpoints of the intervals

∆𝑥 =
𝑏−𝑎

𝑛
= the width of each subinterval

𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ = the point in each interval used to 

determine the height of each rectangle

𝑓(𝑥1
∗), 𝑓(𝑥2

∗), … , 𝑓(𝑥𝑛
∗) = the height of each 

rectangle

The point chosen in the ith subinterval = 𝑥𝑖
∗

𝑓(𝑥1
∗)∆𝑥, 𝑓(𝑥2

∗)∆𝑥, … , 𝑓(𝑥𝑛
∗ )∆𝑥

= the area of each rectangle

The ith subinterval = [𝑥𝑖−1, 𝑥𝑖]

𝐴𝑛 = σ𝑖=1
𝑛 𝑓(𝑥𝑖

∗)∆𝑥 = the total area of all of the rectangles

The area of the ith rectangle = 𝑓(𝑥𝑖
∗) ∆𝑥

The height of the ith rectangle = 𝑓(𝑥𝑖
∗)



1. The Integral (Calc. 1 Version)

𝐴𝑛 = σ𝑖=1
𝑛 𝑓(𝑥𝑖

∗)∆𝑥 = the total area of all of 

the rectangles

𝐴𝑛 is a sequence

𝐴𝑛 is convergent and always converges to the 

same answer no matter what points in each 

interval were chosen

Notation for this limit is…

lim
𝑛→∞

𝐴𝑛 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖
∗)∆𝑥 = න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Let  𝑓(𝑥) be a continuous function on [a, b]. (𝑓 𝑥 ≥ 0 , finding area under curve case)



1. The Integral (Calc. 1 Version)

A = area we’re looking for

If in each interval, you choose the point where 

the graph is the lowest, you get a sequence  

𝐿𝑛 and  𝐿𝑛 ≤ 𝐴

If in each interval, you choose the point where 

the graph is the highest, you get a sequence  

𝑈𝑛 and  𝑈𝑛 ≥ 𝐴

Let  𝑓(𝑥) be a continuous function on [a, b]. (𝑓 𝑥 ≥ 0 , finding area under curve case)



1. The Integral (Calc. 1 Version)

So…

𝐴 = lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑈𝑛 = lim
𝑛→∞

𝐴𝑛 = න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Let  𝑓(𝑥) be a continuous function on [a, b]. (𝑓 𝑥 ≥ 0 , finding area under curve case)



2.   The Double Integral (Over a Rectangle)

Let  𝑓(𝑥, 𝑦) be a continuous function on [a, b]×[c, d].

(𝑓 𝑥, 𝑦 ≥ 0 ,  finding volume under surface case)



2.   The Double Integral (Over a Rectangle)

Let  𝑓(𝑥, 𝑦) be a continuous function on [a, b]×[c, d].

(𝑓 𝑥, 𝑦 ≥ 0 ,  finding volume under surface case)

Divide  [a, b]  into  m  subintervals

Divide  [c, d]  into  n  subintervals

This divides the rectangle into subrectangles

The lengths and widths of each subrectangle

are  ∆𝑥 and  ∆𝑦

The selected point in each sub-rectangle is 

(𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ )

The height of each rectangular box is

𝑓(𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ )

The volume of each rectangular box is 

𝑓(𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ )∆𝐴 or  𝑓(𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ )∆𝑥∆𝑦

The total volume of all of the rectangular boxes is 𝐴𝑚,𝑛 =෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴



2.   The Double Integral (Over a Rectangle)

Let  𝑓(𝑥, 𝑦) be a continuous function on [a, b]×[c, d].

(𝑓 𝑥, 𝑦 ≥ 0 ,  finding volume under surface case)

The total volume of all of the rectangular boxes is 𝐴𝑚,𝑛 =෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴

𝐴𝑚,𝑛 is a (doubly indexed) sequence

𝐴𝑚,𝑛 is convergent and always converges to the same answer no matter what 

point is picked in each subrectangle

𝑉 = lim
𝑚,𝑛→∞

𝐴𝑚,𝑛 = lim
𝑚,𝑛→∞

෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴 =ඵ𝑓 𝑥, 𝑦 𝑑𝐴

R



2.   The Double Integral (Over a Rectangle)

Let  𝑓(𝑥, 𝑦) be a continuous function on [a, b].

(𝑓 𝑥, 𝑦 ≥ 0 ,  finding volume under surface case)



2.   The Double Integral (Over a Rectangle)

Ex 1:  Estimate the volume of the solid that lies above the square  

𝑅 = 0, 2 × [0, 2] and below the elliptic paraboloid  

𝑧 = 16 − 𝑥2 − 2𝑦2. Divide  R  into four equal squares and choose the 

sample point to be the upper right corner of each square  𝑅𝑖𝑗.  Sketch the 

solid and the approximating rectangular boxes. 



2.   The Double Integral (Over a Rectangle)

Ex 1:  Estimate the volume of the solid that lies above the square  

𝑅 = 0, 2 × [0, 2] and below the elliptic paraboloid  

𝑧 = 16 − 𝑥2 − 2𝑦2. Divide  R  into four equal squares and choose the 

sample point to be the upper right corner of each square  𝑅𝑖𝑗.  Sketch the 

solid and the approximating rectangular boxes. 



2.   The Double Integral (Over a Rectangle)

Ex 1:  Estimate the volume of the solid that lies above the square  

𝑅 = 0, 2 × [0, 2] and below the elliptic paraboloid  

𝑧 = 16 − 𝑥2 − 2𝑦2. Divide  R  into four equal squares and choose the 

sample point to be the upper right corner of each square  𝑅𝑖𝑗.  Sketch the 

solid and the approximating rectangular boxes. 



2.   The Double Integral (Over a Rectangle)

Ex 2:  If  𝑅 = 𝑥, 𝑦 − 1 ≤ 𝑥 ≤ 1 ,−2 ≤ y ≤ 2 } , evaluate the 

integral

ඵ 1− 𝑥2 𝑑𝐴

𝑅



2.   The Double Integral (Over a Rectangle)



2.   The Double Integral (Over a Rectangle)

Ex 3:  Use the midpoint Rule with  𝑚 = 𝑛 = 2 to estimate the value of 

the integral below, where  𝑅 = 𝑥, 𝑦 0 ≤ 𝑥 ≤ 2 , 1 ≤ y ≤ 2 } , 

ඵ(𝑥 − 3𝑦2) 𝑑𝐴

𝑅



3.   Iterated Integrals

Ex 4:  Evaluate the iterated integrals below:

a)  0׬
3
1׬
2
𝑥2𝑦 𝑑𝑦 𝑑𝑥



3.   Iterated Integrals

Ex 4:  Evaluate the iterated integrals below:

b)  1׬
2
0׬
3
𝑥2𝑦 𝑑𝑥 𝑑𝑦



3.   Iterated Integrals



3.   Iterated Integrals

Ex 5:  Evaluate the double integral below in 2 different ways, where  

𝑅 = 𝑥, 𝑦 0 ≤ 𝑥 ≤ 2 , 1 ≤ y ≤ 2 } . 

ඵ(𝑥 − 3𝑦2) 𝑑𝐴

𝑅



3.   Iterated Integrals

Ex 6:  If  𝑅 = 1, 2 × [0, 𝜋] ,  evaluate

ඵ𝑦𝑠𝑖𝑛(𝑥𝑦) 𝑑𝐴

𝑅



3.   Iterated Integrals

Ex 7:  Find the volume of the solid  S  that is bounded by the elliptic 

paraboloid  𝑥2 + 2𝑦2 + 𝑧 = 16 ,  the planes  𝑥 = 2 and  𝑦 = 2 ,  and 

the three coordinate planes. 



3.   Iterated Integrals



3.   Iterated Integrals

Ex 8:  If  𝑅 = 0, 𝜋/2 × [0, 𝜋/2] ,  evaluate

ඵsin 𝑥 cos 𝑦 𝑑𝐴

𝑅



4.   General Integrals

can still be calculated even if  𝑓 𝑥 is not always  ≥ 0.

It’s still a limit of Riemann sums.

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

It just loses its meaning as an area under the curve  𝑓(𝑥)

This kind of limit show up a lot, especially in physics…



4.   General Integrals

Let  𝑓(𝑥) be a continuous function on [a, b].    (𝑓 𝑥 not necessarily  ≥ 0)

Divide the interval  [a, b]  into  n  subintervals.

In each subinterval  [𝑥𝑖−1, 𝑥𝑖] ,  pick a point  𝑥𝑖
∗.

Calculate ෍

𝑖=1

𝑛

𝑓(𝑥𝑖
∗) ∆𝑥

This sum approximates some quantity you’re interested in

Then න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖
∗) ∆𝑥

gives you the exact value of the quantity you’re interested in

𝑓(𝑥) 𝑓 𝑥𝑖
∗ ∆𝑥



4.   General Integrals

Ex 9:  A rod is lying along the x-axis from  𝑥 = 0 to  𝑥 = 4 and has a 

linear density given by  𝜌 𝑥 = 9 + 2 𝑥 where  x  is measured in 

meters and  𝜌 is measures in kilograms per meter. Find the total mass of 

the rod.

Idea…



4.   General Integrals

Let  𝑓(𝑥, 𝑦) be a continuous function on 𝑎, 𝑏 × [𝑐, 𝑑].    
(𝑓 𝑥, 𝑦 not necessarily  ≥ 0)

Divide the interval  [a, b]  into  m  subintervals.

In each rectangle  [𝑥𝑖−1, 𝑥𝑖] × [𝑦𝑗−1, 𝑦𝑗] ,  pick a point  (𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ).

Calculate ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴

𝑓(𝑥, 𝑦) 𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴

Divide the interval  [c, d]  into  n  subintervals.

This sum approximates some quantity you’re interested in



4.   General Integrals

Let  𝑓(𝑥, 𝑦) be a continuous function on 𝑎, 𝑏 × [𝑐, 𝑑].    
(𝑓 𝑥, 𝑦 not necessarily  ≥ 0)

Calculate ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴

This sum approximates some quantity you’re 

interested in

Then ඵ𝑓 𝑥, 𝑦 𝑑𝐴 = lim
𝑚,𝑛→∞

෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑓 𝑥𝑖𝑗
∗ , 𝑦𝑖𝑗

∗ ∆𝐴

gives you the exact value of the quantity you’re 

interested in

R



4.   General Integrals

Ex 10:  A rectangular sheet of metal is lying in  1,2 × [1,4] region of 

the xy-plane. It has an areal density given by  𝜌 𝑥, 𝑦 = 𝑥2𝑦 + 𝑥 + 1
where  x  and y  are measured in meters and  𝜌 is measures in kilograms 

per square meter. Find the total mass of the sheet.

Idea…


